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ABSTRACT

Random access signaling, which allows slotted

packets to spill over into adjacent slots, is

investigated. It is shown that sloppy-slotted ALOHA

can always provide higher throughput than
conventional slotted ALOHA. The degree of

improvement depends on the timing error

distribution. Throughput performance is presented

for Gaussian timing error distributions, modified to

include timing error corrections. A general channel

capacity lower bound, independent of the specific

timing error distribution, is also presented.

1.O INTRODUCTION

The random access channels for the North

American MSAT system are likely to involve some

form of slotted ALOHA signaling. A potential

problem is the large guard times which may be

required to ensure that packets stay correctly slotted.
A variation in distance of 6000 km from mobile

terminal to satellite, results in a two way

propagation delay variation on the order of 40 msec.
As an example, with 192 transmission bits per

packet, a guard time of 40 msec corresponds to half

a packet length for 2400 bps, and a full packet

length for 4800 bps. The throughput reduction

resulting directly from the use of non-zero guard
times is well understood. If the guard time is

narrower than the width of the timing error

distribution, then packets transmitted in adjacent

slots will occasionally collide. The throughput

reduction, caused by adjacent packet collisions, is

usually assumed to be small, or forced to be

negligible by choosing a sufficiently large guard
time. It is shown that this is not the best strategy,

and that tile optimum guard time is often much

narrower than the width of the timing error

distribution. Random access signaling, which allows

slotted packets to spill over into adjacent slots, is

denoted as Sloppy-Slotted ALOHA.

The throughput and channel capacity

performance of classical unslotted ALOHA [1], and

classical slotted ALOHA, including non-zero guard

times [2, 3, 4], is reviewed. The corresponding

performance measures for sloppy-slotted ALOHA arc
derived. Performance results are presented for

Gaussian timing error distributions, modified to
include a fraction of traffic with corrected timing.

A convenient and general channel capacity lower

bound, independent of the specific timing error

distribution, is also presented. This lower bound is

particularly useful for designing signaling systems

where most users are expected to have accurate

timing, but a few users could have very large timing

errors, and the type and width of the timing error
distribution is unknown.

2.0 CLASSICAL AL01tA PERFORMANCE

2.1 Unslotted ALOtlA

The throughput performance of classical

unslotted ALOItA is given by the well known

formula [3, 4]
S = G e-2G (1)

where S is the normalized channel throughput in

packets per packet length, and G is the normalized

channel traffic, or offered traffic, also in packets per

packet length. The channel capacity, C, is defined
as the maximum channel throughput achievable, and

is found by differentiating (1) with respect to G and

equating to zero. The result is

C = max[S] ---- 21---_-_ 18.4 % (2)

and occurs for G=0.5. Unslotted ALOHA does not

require guard times since there are no slots to guard.
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2.2 Slotted ALOHA

The throughput performance for classical slotted

ALOHA, which assumes that the required guard

time is negligible, is given by [3, 4]

S : Ge -G

where S and G are as defined above. The channel

capacity for this case is

c = maxiS] = 36.8%

S = G e-(l+g)G (10)

The channel capacity is given by

C = max[S] = 1 (ll)
(3) e(l+g)

and occurs for G=l/(l+g). Figure 1 shows the
channel capacity as a function of the normalized

guard time, g. As the guard time approaches one

full packet length, the capacity degrades to that of
(4) unslotted ALOItA.

and occurs for G=I.0. The channel capacity is
twice that of unslotted ALOHA. The above result

holds only if it is assumed that packets transmitted
in adjacent slots never collide, and that the necessary

guard time is negligible. This is not the case in

practice, and non-zero guard times will be required.

This is especially true for the MSAT system, which

will involve time-varying propagaton delays with

large delay differences.

2.3 Slotted ALOHA with Non-Zero Guard Times

The analysis of classical slotted ALOHA with

non-zero guard times is identical to that with zero

guard times, provided the traffic statistics are
presented in terms of packets per slot, instead of

packets per packet length. The result is

_G t
S I = G r e (5)

where S t is the channel throughput in packets per
slot, and G t is the offered traffic, also in packets per

slot. When the packet and slot lengths are the

same, corresponding to zero guard time, St and G t

are equal to the normalized traffic parameters S and

G, respectively, and equations (5) and (3) are

equivalent. If the guard time is not zero, then the

slot length is given by

r, = Tp + rg = (1 + g) r v (6)

where r v is the packet length in units of time, rg is

the guard time, and
__ Tg

g -- r--_ (7)

is the normalized guard time, measured in packet

lengths. The normalized traffic parameters, S and

G, are given by
S = St rv -- St

r-; - 1 + g (s)

G = G I rp G I
r, -- 1 + g (9)

Combining (5), (8), and (9), gives the result

3.0 SIA)PI_Y-SI,OTTEI) AL011A

3.1 Throughput and Capacity

The previous conventional slotted results are

based on the assumption that packets always fall
within their intended slots. It was shown that the

performance of slotted ALOIIA is poor, approaching

that of unslotted ALOIIA, if the required guard time

is on the order of a packet length. Reducing the

guard time results ira tile following two effects: (a) It

increases tile potential channel capacity by

increasing the number of slots available per unit

time, and (b) It introduces the possibility of adjacent
packet collisions, which in turn will reduce tire

channel capacity. Finding the optimum guard time
obviously involves a trade-off between these two

effects. The apl)roximate throughput performance,

with non-zero guard times, and with the possibility
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Fig. 1: Channel capacity of conventional slotted

ALOIIA with non-zero guard times.
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of adjacent packet collisions, is derived in Appendix
A. The result is

S _- G e-(I+g)(I+2p)G'''' (12)

where, S, G, and g are as defined previously, and p

is the probability that 2 packets transmitted in

adjacent slots collide. The channel capacity
evaluates to

I (13)
C _ e(l+g)(l+2p)

and occurs for G--1/[(l+g)(l+2p)]. Comparing (2)

and (13), it is seen that the capacity of sloppy-

slotted ALOHA is higher than the capacity of

unslotted ALOtIA only if (l+g)(l+2p) < 2. Ideally
one would like to keep both g and p as close to zero

as possible. One must be traded off against the

other, however, since p is a function of g and the

timing error distribution.

3.2 Gaussian Timing Error Distribution

Consider a Gaussian timing error distribution

with a standard deviation of d packet lengths. The

derivation in Appendix A is accurate for d < 0.25.

With d = 0.25, a timing error of half a packet length
or more, in either direction, will occur with a

probability of 4.5%. The channel capacity is

evaluated in Appendix B, and is given by

C -_ 1

e(1 + g) 1 + q'_d

0.4 , , ,

= std. dev. of Gaussian timing error
distribution in packet lengths

0.35 I_ = 0
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Fig. 2: Channel capacity of sloppy-slotted ALOItA

versus guard time, with Gaussian timing
error distribution.

where Q[x] is the area under tile tail of the normal

distribution from x to infinity. Figure 2 shows the

channel capacity versus guard time, with the

standard deviation of the timing error distribution as

a parameter. Typically, one might choose g to be
many standard deviations, to keep the number of

miss-slotted packets small. For example, one would

expect 4.5% of all packets to be miss-slotted with

g=4d. The optimum guard time is defined as the

guard time which maximizes the channel capacity.

For very wide timing error distributions, the

optimum guard time is seen to be closer to g=2d,

which corresponds to over 30% of all packets being

miss-slotted. The optimum guard times, and
corresponding optimum channel capacities, are

presented with the results in the next section.

3.3 Gaussian Distribution with Corrections

A Gaussian timing error distribution, modified

to include timing corrections, is now considered.

Fraction q of all transmitted packets are assumed to

have uncorrected, Gaussianly distributed timing

errors, with a standard deviation of d packet lengths.

The other transmitted packets, fraction (l-q), are
assumed to have perfect timing. The channel

capacity is evaluated in Appendix B. The result is

C -_ I (15)

e(1 +g) [1 +4q(1 - q) QI_tJ+ 2q _Q[_d3 3

tD

i

0

Fig. 3:
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Figure 3 shows the optimum guard times versus

standard deviation, d, with fraction uncorrected, q,

as a parameter. This figure was obtained using

numerical methods on (15), to find the guard time
which maximized the capacity for each d and q.

Note that, with q < 0.5, as the width of tile timing

error distribution becomes very large, the optimum

gnard time jumps back to zero. Figure 4 shows the

corresponding optimum channel capacities.

3.4 Channel Capacity Lower Bound

A lower bound on channel capacity is derived in

Appendix C. The lower bound is general in that it

is in(lependent of the specific type and width of the

timing error distribution. All that is required is the

t)robability of being miss-slotted, m, given a specific

guard time, g. The result is

1 (16)
C > e(l+g)[1 + 2m - m 2]

This lower bound is plotted versus guard time in

Figure 5, with m as a parameter. As one might
expect, the lower bound predicts ideal slotted

perfornmnce with g=0 and m=0, and ideal unslotted

performance with g=0 and m=l. The greater the

guard lime lhe poorer the bound.

This lower bound is useful for designing systems

where corrected timing is possible, but not all

packets will have corrected timing, and the timing

0.4
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Fig. 4: Optimum channel capacity versus standard

deviation of Gaussian tinting error

distribution, modified to include timing
corrections.

error distribution without corrections is not well

known, or time-varying. For example, it may be

known that, on average, the timing of 95% of all
packets can be corrected to within 10% of a packet

length, and that the timing for the remaining 5% is

very unpredictable. It can be seen, from the lower

bound plotted in Figure 5, with g=0.1 and m=0.05,

that the channel capacity is at lea.st 30 %.

4. O CONCI_US IONS

A tight approximation for the throughput and

channel capacity, with sloppy-slotted ALOHA
signaling, was derived. Performance results were

presented for Gaussiau timing error distributions,

modified to include tinting corrections. The results

show that sloppy-slotted ALOttA can always provide

higher lhronghput than conventional slotted

ALOtlA. The degree of improvement depends on

the specific timing error distribution. The greatest

iml)rovement is for wide timing error distributions,

with the optimum guard time often being close to
ZerO.

A convenient and general channel capacity lower

bound, in(lel)en(lent of the specific timing error

distribution, was also presented. This lower bound is

parlicularly usefid for (lesigning signaling systems

where most users are expected to have accurate

timing, I)ut a few users could have very large timing
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Fig. 5: Channel capacity lower bound versus guard

time, with fraction of miss-slotted packets

as a parameter.

360

International Mobile Satellite Conference, Ottawa, 1990



errors, and the type and width of the timing error
distribution is unknown.

Appendix A: _ of Sloppy-Slotted .ALOHA

The following definitions are used:
N = number of users

M = middle (or co-slot) collision
L = left collision

R = right collision

= no x, or not x (eg. 1(,1= no middle collision)

P(x) = probability of x

P(xMy) = probability of x and y

P(x]y) = probability of x given y

Then St/N = average throughput in packets per

slot per user = probability of a successful packet per
slot per user, and Gt/N = average offered traffic in

packets per slot per user = probability of a

transmission per slot per user. It follows that

S t G t
N -- N P(MMLr3R) (A.1)

Multiplying through by N, and using the fact that M

is indepeudcnt of L and R, gives

SI = G t P(I_I) P(LMR) (A.2)

M is independent of L and R because P(M) does not

depend on the timing error distribution. This is

because a second co-slot transmission is always
assumed to cause a middle collision. L and R are

not independent. Knowing that a left collision has

occurred reduces the probability of a right collision,

since it is more likely that the packet of interest has

shifted left than right. Expressed mathematically,

Note that

P(L)2--P(L) 2 < P(LMR) < p(_,)2 (A.6)

These bounds differ only by P(L) _. Typically, in the

operating region of interest, P(L) is fairly small, so

that P(L) 2 is a very small second order effect. Even

for P(L) as high as 10%, the bounds are only 1%
apart. Thus, L and R are approximately indepen-

dent in the operating region of interest. Using the

upper bound of (A.6) as an approximation, (A.2)

simplifies to
St "_ G t P(iVl) P(L) 2 (A.7)

For N users, P(_-I) is given by

[P(1VI) = 1 - --N (A.8)

Taking the limit as N approaches infinity gives

_G !
P(_I) = e (A.9)

For N users, P(L) can bc approximated by

P(L) _,-_

P(RIL) _< P(R) (A.3) where

P(LNR) = 1 - P(L) - P(R) + P(LMR)

1 - P(L) - P(R)

= [1-P(L)I[1-P(R)] - P(L) P(R)

= P(L) P(R) - P(L) P(R) (A.4)

Also, it follows from (A.3), that

P(LClR) = P(L) P(RIL )

_< P(L) P(R) (A.5)

With equal traffic and timing error statistics for all

users, the symmetry of the problem forces P(L) =

P(R), even if the timing error distribution is not

symmetric. From (A.4) and (A.5), the following

lower and upper bounds on P(LfflR) are obtained

P(0 left adjacent packets) (A.10)

+ P(1 left adjacent packet) x P( no overlap)

+ P(2 left adjacent packets)x P( no overlap) 2

E N= 1- N-

+ (_)[GtI1N-I

_- . . •

_

G t 1N-11 - --ff (l--p)

G t 1 N-21 -- -_- (l--p) 2

(A.11)

N! (A.12)
(N-n)! n!

is the number of "N choose n" combinations, and p

is the probability that 2 packets transmitted in

adjacent slots overlap (collide). The approximation
is only for the high order terms, and is due to the

independence assumption for the probability of no

overlap when 2 or more packets are transmitted in

the same adjacent slot. The independence

assumption provides a very tight lower bound in this

case, provided p is small (e.g. less than 10%).

Taking the limit as N approaches infinity gives

P([,) _" e-Gill + G'(1-p) + _[G'(1-p)3 2 +.. "1

= e-Gt eGt(1-P)

= e-pGt (A.13)
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Substituting (A.9) and (A.13) into (A.7) yields (as N
approaches infinity)

S t _ Gte "(I+2p)G!" (A.14)

Performance can be presented in terms of the

normalized throughput, S, and offered traffic, G,

measured in packets per packet length, by

accounting for the non-zero guard times, as in

Section 2.3. The result is equation (12).

Appendix B: Gaussian Distribution with Corrections

Let u and v represent the timing errors,

measured in packet lengths, for the first and second

of two adjacent packets, respectively. With

probability (l-q), the timing is correct, and with

probability q, the timing is Gaussianly distributed

with standard deviation d. The probability that the
two adjacent packets collide is given by

p ----P(u > v+g) (B.I)

II A fu(x)fv(Y)dx dy (13.2)

[ (l-q)fu(x)dx + r (l-q)fv(y)dy
J Lx JLy

// fu(x) fv(y)dx dy (B.3)+
JJ A-Lx-Ly

g

where fu(x) and fv(Y) represent the probability

density functions for u and v respectively, Lx and Ly

are the infinite half-lines shown on the x and y axes

in Figure 6, and A is the shaded half-plane.

Substituting (B.4) into (13) gives (15), and letting
q=1 gives (14).

Appendix C: Channel Caoacitv Lower Bound

Using definitions similar to those in Appendix B,

the probability that the two adjacent packets collide

can be upper bounded as follows:

p -" P(u > v+g) (c.1)

= [[ fu(x) fv(Y)dx dy (C.2)
JJ A

_< [[ fu(x) fv(Y)dx dy (C.3)
Jd A+B+C

2 fu(x) fv(Y) dx dy (C.4)
D

' '(I--m) 2 (C.5)

= m -- _ m r (C.6)

where A, B, C, and D represent the regions shown in

Figure 7, and the probability of u or v being outside

the box is m. Substituting (C.6) into (13) gives (16).
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